フェルマーの小定理の証明と使い方 - Qiita

Tue, 30 Jul 2024 10:23:52 +0000
3日間の講演の最終日。彼はついにフェルマーの最終定理を証明しきった。 出典: ある部屋に入るが、そこで何か月も、ときには数年も家具にぶつかって足踏みしていなければならない。ゆっくりとだが、全部の家具がどこにあるかがわかってくる。そして明りのスイッチを探す。明りをつけると部屋全体が照らし出される。それから次の部屋へ進んで、同じ手順を繰り返すんだ。 引用: 人生に役立つ名言
  1. 【小学生でもわかる】フェルマーの最終定理を簡単解説 | はら〜だブログ
  2. サイモン・シンおすすめ作品5選!世界が読んだ『フェルマーの最終定理』作者 | ホンシェルジュ
  3. フェルマーの小定理の証明と使い方 - Qiita
  4. 『フェルマーの最終定理』その他、文系でも楽しめる数学者の本

【小学生でもわかる】フェルマーの最終定理を簡単解説 | はら〜だブログ

7$ において $3 × 1 \equiv 3$ $3 × 2 \equiv 6$ $3 × 3 \equiv 2$ $3 × 4 \equiv 5$ $3 × 5 \equiv 1$ $3 × 6 \equiv 4$ となっています。実はこの性質は一般の素数 $p$ について、$1 × 1$ から $(p-1) × (p-1)$ までの掛け算表を書いても成立します。この性質は後で示すとして、まずはこの性質を用いて Fermat の小定理を導きます。 上記の性質から、$(3×1, 3×2, 3×3, 3×4, 3×5, 3×6)$ と $(1, 2, 3, 4, 5, 6)$ とは ${\rm mod}. 7$ では並び替えを除いて等しいことになります。よってこれらを掛け合わせても等しくて、 $(3×1)(3×2)(3×3)(3×4)(3×5)(3×6) ≡ 6! \pmod 7$ ⇔ $(6! )3^6 ≡ 6! \pmod 7$ となります。$6! $ と $7$ は互いに素なので両辺を $6! サイモン・シンおすすめ作品5選!世界が読んだ『フェルマーの最終定理』作者 | ホンシェルジュ. $ で割ることができて、 $3^6 ≡ 1 \pmod 7$ が導かれました。これはフェルマーの小定理の $p = 7$, $a = 3$ の場合ですが、一般の場合でも $p$ を任意の素数、$a$ を $p$ で割り切れない任意の整数とする $(a, 2a, 3a,..., (p-1)a)$ と $(1, 2, 3,..., p-1)$ とは ${\rm mod}. p$ において、並び替えを除いて等しい よって、$(p-1)! a^{p-1} ≡ (p-1)! $ なので、$a^{p-1} ≡ 1$ が従う という流れで証明できます。 証明の残っている部分は $p$ を任意の素数、$a$ を $p$ で割り切れない任意の整数とする。 です。比較的簡単な議論で証明できてしまいます。 【証明】 $x, y$ を $1 \le x, y \le p-1$, $x \neq y$ を満たす整数とするとき、$xa$ と $ya$ とが ${\rm mod}.

サイモン・シンおすすめ作品5選!世界が読んだ『フェルマーの最終定理』作者 | ホンシェルジュ

【フェルマーの最終定理②】天才が残した300年前の難問に終止符 - YouTube

フェルマーの小定理の証明と使い方 - Qiita

こんにちは。福田泰裕です。 2020年4月、「ABC予想が証明された!」というニュースが報道されました。 しかし多くの人にとって、 ABC予想って何? フェルマーの小定理の証明と使い方 - Qiita. という反応だったと思います。 今回は、このABC予想の何がすごいのか、何の役に立つのかについて解説していきます。 最後まで読んでいただけると嬉しいです。 ABC予想とは? この記事を読む前に、ABC予想について知っておかなければなりません。 証明まで理解することは一般人には絶対にできませんが、「ABC予想が何なのか」は頑張れば理解できると思います。 ABC予想についてよく分からない…という方は、こちらの記事からご覧ください👇 まとめておくと、次のようになります。 【弱いABC予想】 任意の正の数 \(\epsilon\) に対して、\(a+b+c\) を満たす互いに素な自然数の組 \((a, b, c)\) のうち、 $$c>\mathrm{rad}(abc)^{1+\epsilon} $$ を満たすものは 高々有限個しか存在しない 。 この 弱いABC予想と同値(同じ意味) であるのが、もう1つの 強いABC予想 です👇 【強いABC予想(弱いABC予想と同値)】 任意の正の数 \(\epsilon\) に対して、\(\epsilon\) に依存する数 \(K(\epsilon)>0\) が存在し、\(a+b+c\) を満たす互いに素な すべての自然数の組 \((a, b, c)\) に対して $$c

『フェルマーの最終定理』その他、文系でも楽しめる数学者の本

p$ における $a$ の 逆元 」と呼びます。逆元が存在することは、${\rm mod}. p$ の世界において $a ÷ b$ といった割り算ができることを意味しています。その話題について詳しくは 「1000000007 で割ったあまり」の求め方を総特集! 〜 逆元から離散対数まで 〜 を読んでいただけたらと思います。 Fermat の小定理を用いてできることについて、紹介していきます。 4-1: 逆元を計算する 面白いことに、Fermat の小定理の証明のために登場した「 逆元 」を、Fermat の小定理によって計算することができます。定理の式を少し変形すると $a × a^{p-2} \equiv 1 \pmod{p}$ となります。これは、$a^{p-2}$ が $a$ の逆元であることを意味しています。つまり、$a^{p-2} \pmod{p}$ を計算することで $a$ の逆元を求めることができます。 なお逆元を計算する他の方法として 拡張 Euclid の互除法 を用いた方法があります。詳しくは この記事 を読んでいただけたらと思います。 4-2.

しかし、そんな長い歴史に終止符を打った人物がいます。 その名が" アンドリュー・ワイルズ " 彼が「フェルマーの最終定理」と出会ったのは、10歳の時でした。 彼はその"謎"に出会った瞬間、" いつか必ず自分が証明してみせる " そんな野望を抱いたそうです。 やがて、彼は、プロの数学者となり、7年間の月日を経て1993年「謎がとけた!」発表をしました。 しかしその証明は、たった一箇所だけ 欠陥 があったのです。 その欠陥は、とても修復できるものではなく、指摘されたときにワイルズは半ば修復を諦めていました。 幼い頃からずっっと取り組んできて、いざ「ついに出来た!」と思っていたものが、実は出来ていなかった。 彼がその時に味わった絶望はとても図り知れません。 しかし彼は決して 諦めませんでした 。 幼い頃決意したその夢を、。 そして、1年間悩みに悩み続け、翌年1994年 彼はその欠陥を見事修正し、「フェルマーの最終定理」を証明して見せたのである 。 まとめ いかがだったでしょうか? 空白の350年間を戦い続けた数学者たちの死闘や、証明の糸口を作った2人の日本人など、 まだまだ書き足りない部分はありますが、どうやら余白が狭すぎました← 詳しく知りたい!もっと知りたい!という方は、こちらの本を読んでみてください。 私は、始めて読んだ時、あまりの面白さに徹夜で読み切っちゃいました! "たった一つの定理に数え切れないほどの人物が関わったこと" "その証明に人生を賭けた人物がいたこと" 「フェルマーの最終定理」には、そんな背景があったことを知っていただけたら幸いです。