平行 軸 の 定理 断面 二 次 モーメント

Tue, 30 Jul 2024 00:46:14 +0000

067ですから、曲げ応力はそんなに大きくならないですよね。 つまり軽量化できているということです。 しかし中空断面の肉厚を薄くしすぎると、座屈が起こったりと破壊モードを考慮する必要があります。 長かったですが、今回はここまで! 次回は梁のたわみの話です! では!

  1. 【構造力学】図形の図心軸回りの断面2次モーメントを求める
  2. 【三角形の断面二次モーメントの求め方】平行軸の定理を使います - おりびのブログ

平行軸の定理(1) - YouTube

【構造力学】図形の図心軸回りの断面2次モーメントを求める

2020/09/16 おはようございます! だいぶあいてしまいました💦 前回、曲げモーメントに対して発生する曲げ応力を導出しました。その際はモーメントの釣り合いを使いましたが、断面2次モーメントが含まれていたかと思います。 今回は簡単な形状の断面2次モーメントを計算します。 z軸周りの断面2次モーメントは こうなります。2項目は定義です。 つまりIzは、高さhの3乗、幅の1乗に比例することがわかります。 では問題。 先程のIzの式を h→2a, b→a h→a, b→2a としましょう。 するとIzが左から2a^4/3, a^4/6 とわかります。 最大応力は σ = M/Iz ×y ですから、最大応力は左から となり、縦長に使った方が応力が1/2になることがわかります。 感覚的にわかりますよね… ここからは、断面二次モーメントを求めるための有用な公式の紹介です。 1. 平行軸定理 図心を通るz軸に関する断面二次モーメントをIz、上図のようにy=eの位置にあるz軸に平行な任意のz'軸に関する断面2次モーメントをIz'として、Aを断面積とするお、以下の式が成り立ちます。 2. 加算定理 断面積Aの図形を分割して断面全体を和または差で表すと、全断面積は A= A1±A2.... ±An となり、分割した断面のz軸に関する断面2次モーメントをそれぞれI1, I2, とすると 全断面2次モーメントは I = I1 ± I2 ±... ± In これらを使って問題を解きましょう。 さて、3つのエリアに分割して考えます。 まずは上のA1について。 まずこのエリアの断面2次モーメントは(あくまでのこのエリアでの話) 高さa/2なので、 a^4/96 です。実際の図心はO点なので、平行軸の定理を使って移動します。 A3エリアのI3はI1と同じです。 A2エリアについてです。これは簡単。 I2 = a^4/24 よって もし、断面積がH型ではなく、長方形だったとすると I = 2a^3/3となります。 長方形→H型で… 断面積は2a^2→1. 5a^2と25%減少 断面2次モーメントは6. 【三角形の断面二次モーメントの求め方】平行軸の定理を使います - おりびのブログ. 25%しか減少していない ことがわかります。 つまりコストを抑えながら強度は保証できるということですね。 さて最後。 また解説を書くのは面倒なので、流れだけ書いてから解説を貼ります… まずはねじれの剛性に関わる断面2次極モーメントIρを求めます。 Iρ = Iy + Iz が成り立ち、円形なのでIy=Izとなります。 これで半径rの時のIzやZが求まります。 ほぼ中実断面は求まったので、あとは加算定理を使って中空形状を求めるのみです。 最後の結果を見ると面白いことがわかります。 それは中空にすることで、質量は3/4倍になるが、断面2次モーメントと断面係数は15/16倍にしかなっていないということです。 15/16って1.

【三角形の断面二次モーメントの求め方】平行軸の定理を使います - おりびのブログ

質問日時: 2011/12/22 01:22 回答数: 3 件 平行軸の定理の証明が教科書に載っていましたが、難しくてよくわかりませんでした。 できるだけわかりやすく解説していただけると助かります。 No. 2 ベストアンサー 簡単のために回転軸、重心、質点(質量m)が直線状にあるとして添付図のような図を書きます。 慣性モーメントは(質量)×(回転軸からの距離の二乗)なので、図の回転軸まわりの慣性モーメントは mX^2 = m(x+d)^2 = mx^2 + md^2 + 2mxd となりますが、全ての質点について和を取ると重心の定義からΣmxが0になるので、最後の2mxdが和を取ることで0になり、 I = Σmx^2 + (Σm)d^2 になるということです。第一項のΣmx^2は慣性モーメントの定義から重心まわりの慣性モーメントIG, Σmは剛体全体の質量Mになるので I = IG + Md^2 教科書の証明はこれを一般化しているだけです。 この回答への補足 >>全ての質点について和を取ると重心の定義からΣmxが0になるので 大体理解できましたが、ここの部分がよくわからないので教えていただけませんか。 補足日時:2011/12/24 15:40 0 件 この回答へのお礼 どうもありがとうございました! お礼日時:2011/12/25 13:07 簡単のため一次元の質点系なり剛体で考えることにして、重心の座標Rxは、その定義から Rx = Σmx / Σm 和は質点系なり剛体を構成する全ての質点について取ります。 ANo. 2の添付図のx(小文字)は重心を原点とした時の質点の座標。 したがって重心が原点にあるので Rx =0 この二つの関係から Σmx = 0 が導かれます。 これを二次元、三次元に拡張するのは同じ計算をy成分、z成分についても行なうだけです。 1 No. 【構造力学】図形の図心軸回りの断面2次モーメントを求める. 1 回答者: ocean-ban 回答日時: 2011/12/22 06:57 お探しのQ&Aが見つからない時は、教えて! gooで質問しましょう! このQ&Aを見た人はこんなQ&Aも見ています

parallel-axis theorem 面積 A の図形の図心\(G\left( {{x_0}, {y_0}} \right)\)を通る x 軸に平行な座標軸を X にとると, x 軸に関する断面二次モーメント I x と, X 軸に関する断面二次モーメント I x の間に,\({I_x} = {I_X} + y_0^2A\)の関係が成立する.これが断面二次モーメントの平行軸の定理であり,\({y_0}\)は二つの平行軸の距離である.また,図心 G を通るもう一つの座標軸を Y にとると,\({I_{xy}} = \int_A {xyAdA} \)で定義される断面相乗モーメントに関して,\({I_{xy}} = {I_{XY}} + {x_0}{y_0}A\)なる関係がある.これも平行軸の定理と呼ばれる.